• Counting on count data models

    Quantitative policy evaluation can benefit from a rich set of econometric methods for analyzing count data

    Rainer Winkelmann, May 2015
    Often, economic policies are directed toward outcomes that are measured as counts. Examples of economic variables that use a basic counting scale are number of children as an indicator of fertility, number of doctor visits as an indicator of health care demand, and number of days absent from work as an indicator of employee shirking. Several econometric methods are available for analyzing such data, including the Poisson and negative binomial models. They can provide useful insights that cannot be obtained from standard linear regression models. Estimation and interpretation are illustrated in two empirical examples.
  • Measuring employment and unemployment

    Should statistical criteria for measuring employment and unemployment be re-examined?

    Measuring employment and unemployment is essential for economic policy. Internationally agreed measures (e.g. headcount employment and unemployment rates based on standard definitions) enhance comparability across time and space, but changes in real labor markets and policy agendas challenge these traditional conventions. Boundaries between different labor market states are blurred, complicating identification. Individual experiences in each state may vary considerably, highlighting the importance of how each employed or unemployed person is weighted in statistical indices.
  • Can lab experiments help design personnel policies?

    Employers can use laboratory experiments to structure payment policies and incentive schemes

    Marie Claire Villeval, November 2016
    Can a company attract a different type of employee by changing its compensation scheme? Is it sufficient to pay more to increase employees’ motivation? Should a firm provide evaluation feedback to employees based on their absolute or their relative performance? Laboratory experiments can help address these questions by identifying the causal impact of variations in personnel policy on employees’ productivity and mobility. Although they are collected in an artificial environment, the qualitative external validity of findings from the lab is now well recognized.
  • Relative deprivation in the labor market

    The choice of reference group crucially determines subjective deprivation and thus affects labor market behavior

    Paolo Verme, June 2017
    Why do different population groups (e.g. rural vs. urban, youth vs. elderly and men vs. women) experience the same objective labor status differently? One hypothesis is that people are more concerned with relative deprivation than objective deprivation and they value their own status relative to the status of their peers—the reference group. One way to test this hypothesis in the labor market is to measure individual differences in labor status while controlling for characteristics that define population groups. This measure is called “relative labor deprivation” and can help policymakers to better understand how labor claims are generated.
  • Using linear regression to establish empirical relationships

    Linear regression is a powerful tool for estimating the relationship between one variable and a set of other variables

    Marno Verbeek, February 2017
    Linear regression is a powerful tool for investigating the relationships between multiple variables by relating one variable to a set of variables. It can identify the effect of one variable while adjusting for other observable differences. For example, it can analyze how wages relate to gender, after controlling for differences in background characteristics such as education and experience. A linear regression model is typically estimated by ordinary least squares, which minimizes the differences between the observed sample values and the fitted values from the model. Multiple tools are available to evaluate the model.
  • The use of natural experiments in migration research

    Data on rapid, unexpected refugee flows can credibly identify the impact of migration on native workers’ labor market outcomes

    Semih Tumen, October 2015
    Estimating the causal effect of immigration on the labor market outcomes of native workers has been a major concern in the literature. Because immigrants decide whether and where to migrate, immigrant populations generally consist of individuals with characteristics that differ from those of a randomly selected sample. One solution is to focus on events such as civil wars and natural catastrophes that generate rapid and unexpected flows of refugees into a country unrelated to their personal characteristics, location, and employment preferences. These “natural experiments” yield estimates that find small negative effects on native workers’ employment but not on wages.
  • Do workers work more when earnings are high?

    Studies of independent contractors suggest that workers’ effort may be more responsive to wage incentives than previously thought

    Tess M. Stafford, November 2018
    A fundamental question in economic policy is how labor supply responds to changes in remuneration. The responsiveness of labor supply determines the size of the employment impact and efficiency loss of progressive income taxation. It also affects predictions about the impacts of policies ranging from fiscal responses to business cycles to government transfer programs. The characteristics of jobs held by independent contractors provide an opportunity to overcome problems faced by earlier studies and help answer this fundamental question.
  • The usefulness of experiments

    Are experiments the gold standard or just over-hyped?

    Jeffrey A. Smith, May 2018
    Non-experimental evaluations of programs compare individuals who choose to participate in a program to individuals who do not. Such comparisons run the risk of conflating non-random selection into the program with its causal effects. By randomly assigning individuals to participate in the program or not, experimental evaluations remove the potential for non-random selection to bias comparisons of participants and non-participants. In so doing, they provide compelling causal evidence of program effects. At the same time, experiments are not a panacea, and require careful design and interpretation.
  • Randomized control trials in an imperfect world

    How can we assess the policy effectiveness of randomized control trials when people don’t comply?

    Zahra Siddique, December 2014
    Randomized control trials (RCTs) have become increasingly important as an evidence-based method to evaluate interventions such as government programs and policy initiatives. Frequently, however, RCTs are characterized by “imperfect compliance,” in that not all the subjects who are randomly assigned to take a treatment choose to do so. This could result in a failure to identify the treatment effect, or the impact of the treatment on the population. However, useful information on treatment effectiveness can still be recovered by estimating “bounds,” or a range of values in which treatment effectiveness can lie.
  • Gravity models: A tool for migration analysis

    Availability of bilateral data on migratory flows has renewed interest in using gravity models to identify migration determinants

    Raul Ramos, February 2016
    Gravity models have long been popular for analyzing economic phenomena related to the movement of goods and services, capital, or even people; however, data limitations regarding migration flows have hindered their use in this context. With access to improved bilateral (country to country) data, researchers can now use gravity models to better assess the impacts of migration policy, for instance, the effects of visa restriction policies on migration flows. The specification, estimation, and interpretation of gravity models are illustrated in different contexts and limitations of current practices are described to enable policymakers to make better informed decisions.
show more